HOSSAM GHANEM

(22) 3.* Tangent Line; Vertical Tangent Line And Corner(B)

Example 1

60 October 31, 2011

(4 points) Let $f(x) = x^{7/3} - 7x^{1/3}$. Find all the point on the graph of f at which (a) the tangent line is horizontal (b) the tangent line is vertical.

Solution

$$f(x) = x^{7/3} - 7x^{1/3}$$

$$f(x) = \frac{7}{3}x^{\frac{4}{3}} - \frac{7}{3}x^{-\frac{2}{3}} = \frac{7}{3}x^{-\frac{2}{3}}(x^2 - 1) = \frac{7(x^2 - 1)}{3x^{\frac{2}{3}}}$$
H. T at $x^2 - 1 = 0$ \rightarrow $x = \pm 1$
V. T at $x^{\frac{2}{3}} = 0$ \rightarrow $x = 0$

Example 2

51 November 24, 2008

Show that $f(x) = |\sin x|$, has a corner in $(-\pi, \pi)$

Solution

$$f(x) = \begin{cases} \sin x & \text{if } 0 < x < \pi \\ 0 & \text{if } x = 0 \end{cases}$$

$$f(0^{-}) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-\sin x - 0}{x - 0} = \lim_{x \to 0^{-}} \frac{-\sin x}{x} = -1$$

$$f(0^{+}) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\sin x - 0}{x - 0} = \lim_{x \to 0^{+}} \frac{\sin x}{x} = 1$$

$$\therefore f(0^{-}) \neq f(0^{+})$$

$$\therefore f \text{ has a corner at } x = 0 \text{ , } in(-\pi, \pi)$$

Example 3

52 April 9, 2009 A

Show that the graph of
$$f(x) = \frac{x^{\frac{2}{3}}}{x-1}$$
 has a vertical tangent line

Solution

$$f(x) = \frac{x^{\frac{2}{3}}}{x-1}, \quad x \neq 1$$

$$f'(x) = \frac{(x-1) \cdot \frac{2}{3}x^{\frac{-1}{3}} - x^{\frac{2}{3}}}{(x-1)^2} = \frac{x^{\frac{-1}{3}} \left(\frac{2}{3}(x-1) - x\right)}{(x-1)^2} = \frac{\frac{2}{3}(x-1) - x}{x^{\frac{1}{3}}(x-1)^2}$$

$$\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} f'(x)$$

$$\lim_{x\to 0} f^{\setminus}(x) = \infty$$

f cont. at x = 0

 $\therefore f$ has a vertical tangent line at x = 0

Example 4

23 April 27,2000

Let $f(x) = \frac{x}{x+1}$ Find all x at which the tangent line to the graph of f is Parallel to the line 4y - x - 3 = 0

Solution

L:
$$4y - x - 3 = 0$$
 $m = \frac{1}{4}$

$$f(x) = \frac{x}{x+1}$$

$$f'(x) = \frac{(x+1)-x}{(x+1)^2} = \frac{1}{(x+1)^2}$$

$$\therefore \frac{1}{(x+1)^2} = \frac{1}{4}$$

$$(x+1)^2 = 4$$

$$x + 1 = \pm 2$$

 $x + 1 = 2$ or $x + 1 = -2$
 $\therefore x = 1$ or $x = -3$

Example 5

31 June 5, 2008

Find equations of the lines of slope -4 that are tangents to the curve $y = \frac{1}{x}$.

Solution

$$y = \frac{1}{x}$$

$$y' = \frac{-1}{x^2}$$

$$\therefore \frac{-1}{x^2} = -4$$

$$x^2 = \frac{1}{4}$$

$$x = \pm \frac{1}{4}$$

$$x = \pm \frac{1}{2}$$

$$\therefore x = -\frac{1}{2} \quad \text{or } x = \frac{1}{2}$$

$$\therefore y = -2 \quad \text{or } y = 2$$

$$y - y_1 = m(x - x_1)$$

$$L_1: y + 2 = -4\left(x + \frac{1}{2}\right)$$

$$y + 4x + 4 = 0$$

$$L_2: y - 2 = -4\left(x - \frac{1}{2}\right)$$

$$y + 4x - 4 = 0$$

$$p_1\left(-\frac{1}{2},-2\right)$$
 $p_2\left(\frac{1}{2},2\right)$

Example 6

34 June 21, 2009

Show that the curves $f(x) = x^2$ and $g(x) = -x^2 + 4x - 2$ have the same tangent line at their point of intersection

Solution

Intersection point at

$$f(x) = g(x)$$

$$x^2 = -x^2 + 4x - 2$$

$$\therefore 2x^2 - 4x + 2 = 0$$

$$\therefore x^2 - 2x + 1 = 0$$

$$\therefore (x-1)^2 = 0$$

$$x = 1$$

$$f^{\setminus}(x) = 2x \rightarrow$$

$$g^{\setminus}(x) = -2x + 4 \qquad \rightarrow$$

$$f^{\setminus}(1) = g^{\setminus}(1)$$

$$f^{\setminus}(1) = 2$$
$$g^{\setminus}(1) = 2$$

 \therefore the curves have the same tangent line at x = 1

Example 7

07/12/2011

(4 points): Find an equation for the tangent line to the curve $y = 2 + \sin(xy)$

at x = 0

Solution

$$y = 2 + \sin(xy)$$

$$y|_{x=0} = 2 + \sin(0) = 2$$

$$y' = \cos(xy)(y + xy')$$

$$y^{\setminus} = \cos(0)(2+0) = 2$$

$$p(0,2) \quad m=2$$

$$y - y_1 = m(x - x_1)$$

$$y - 2 = 2x$$

Homework

47 November 10, 2007 A

Let $f(x) = x^{\frac{4}{3}} + 4x^{\frac{1}{3}} - 2$

Find the point on the graph of f at which the tangent line is vertical

32 August 02, 2008

Find the x – coordinate of the point where the tangent line to the curve is vertical. $y = (2x - 1)^{\frac{1}{3}} + x^2 + 7$

Show that f has vertical tangent at x = 0 $f(x) = (x + 3)\sqrt[3]{x}$

21 May 27. 2001

Let $f(x) = 2 + \sqrt[3]{x^2 - 1}$.

Show that the graph of f has a vertical tangent at the point (1, 2).

28 January 13. 2007

29 June 4, 2007

Let $f(x) = \frac{3}{8}(8 - x^2)x^{\frac{2}{3}}$. Find the x – coordinate of the point at which the tangent line to the graph of f is horizontal and the x – coordinate of the point at which the tangent line to the graph of f is vertical.

<u>6</u>

 $f(x) = x^{\frac{1}{3}}(x^2 - 3)^{\frac{1}{3}}$. Find the x – coordinate of the point at which the tangent line to the graph of f is horizontal and the x – coordinate of the point at which the tangent line to the graph of f is vertical.

50 November 17, 2008 A

Let $f(x) = x^{\frac{5}{3}} - 5x^{\frac{2}{3}} + 1$ Find the x-coordinates of the points at which the graph of f has (a) a horizontal tangent line (b) a vertical tangent line.

8

Find the point on the graph of f which the slop of the tangent line is 3 where

 $f(x) = 2x - \frac{1}{x}$

6 April 8, 1993

Find the values of a, b and c so that the graph of the equation $y = ax^2 + bx + c$, passes through the origin and point (1, 1) and its tangent line has slop 3 at the point (1, 1)

Homework

<u>10</u>	Let $f(x) = a x^2 - 12x + 8$. Find all values of a such that the tangent 1 graph of f at $x = 3$ is parallel to the line $y - 6x + 1 = 0$	Line to the
	graph of f at $x = 3$ is parallel to the line $y - 6x + 1 = 0$	

- Let $f(x) = 2x \sin x + x + 1$ show that there is a point P on the graph of f at which the tangent line is parallel to the straight line y 2x + 1 = 0
- Prove that the line tangent to the curve $y = x + 2x^2 4x^4$ at the point (-1, 0) is also tangent to the curve at the point (1, 2)
- Show that f has a corner at x = 0; $f(x) = \begin{cases} 2x & \text{if } x \le 0 \\ x^2 & \text{if } x > 0 \end{cases}$
- Given $f(x) = x^2 + x \cos x 1$ Use the intermediate value theorem to show that there is a real number c between $-\frac{\pi}{2}$ and 0 such that f(c) = 0
- Let $f(x) = x^3 + x^2 x$ Use the intermediate value theorem to show that there is a point on the graph of f at which the tangent line is horizontal
- 16 [3 pts.] At what points on the curve $y = \frac{x-1}{x+1}$ is the tangent line parallel to the line x-2y=2?
 - Let $f(x) = \frac{(x-3)^{\frac{2}{3}}}{x-1}$

17

- (a) Find the x -coordinate(s), if any, of the point(s) on the curve y = f(x) where the tangent line is vertical
- (b) Find the x -coordinate(s), if any, of the point(s) on the curve y = f(x) where the tangent line is horizontal
- 18 Show that f has a corner at x = 2; f(x) = |x 2| + 5
- Find equations of the lines passing through the origin and tangent to the curve $y = x^2 + 1$

Show that f has a corner at x = 2; f(x) = |x - 2| + 5

Solution

$$f(x) = \begin{cases} x - 2 + 5 & \text{If } x > 2 \\ 5 & \text{If } x = 2 \end{cases} \qquad f(x) = \begin{cases} x + 3 & \text{If } x > 2 \\ 5 & \text{If } x = 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \\ 5 & \text{If } x = 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \\ 5 & \text{If } x = 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \\ 5 & \text{If } x = 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \\ 5 & \text{If } x = 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \\ 5 & \text{If } x = 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \\ 5 & \text{If } x = 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \\ 5 & \text{If } x = 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \\ 5 & \text{If } x = 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3 & \text{If } x > 2 \end{cases}$$

$$f(x) = \begin{cases} x + 3$$

 $\cdots \cap \text{Inds a conner at } x = 2$

35 August 15, 2009

Find equations of the lines passing through the origin and tangent to the curve $y = x^2 + 1$

Solution

$$y = x^2 + 1$$
$$y = 2x$$

19

Let the point of tengency $(a, a^2 + 1)$

- m = 2a
- $\therefore y y_1 = m(x x_1)$
- $y a^2 1 = 2a(x a)$
 - \therefore the line is passing through the point (0,0)

$$-a^2 - 1 = 2a(-a)$$

$$-a^2 - 1 = -2a^2$$

$$a^2 = 1$$

$$a = \pm 1$$

at a = 1

$$y - 1 - 1 = 2(x - 1)$$

$$y - 2 = 2x - 2$$

$$y = 2x$$

at a = -1

